

CLEO 2013 QTh3A.1 Laser-Plasma Acceleration of Electrons and Plasma Diagnostics at High Laser Fields

Mike Downer University of Texas at Austin

- TW → PW lasers
- MeV → GeV electrons

Wang et al., Nature Commun. 4, 1988 (2013)

VUV → hard x-ray coherent radiation

August 2008 UT Tower Lighting dedicating Texas PW Laser

Particle accelerators have evolved into the 21st century's most powerful* scientific instruments

* and largest and most expensive

TeV:

GeV Laser-Plasma electron accelerators are poised to transform biology, chemistry and physics by putting table-top femtosecond X-ray free-electron lasers in every major research university

Laser-plasma <u>proton</u> accelerators are poised to miniaturize proton cancer therapy.

Electrons Accelerating on a Laser-Driven Plasma Wave

Tajima & Dawson, Phys. Rev. Lett. 43, 267 (1979)

Accelerator performance depends critically on plasma structure...

Review: Esarey, Rev. Mod. Phys. 81, 1229 (2009)

Before 2004:

New precise electron injection techniques may revive the quasi-linear LPA regime

After 2004:

Highly nonlinear, challenging to control

... Today, most LPAs operate in the "bubble" regime

The bubble regime offers trade-offs in designing multi-GeV LPAs

Wei Lu *et al.*, *Phys. Rev. Special Topics - Accel. & Beams* **10**, 061301 (2007) "Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime"

- plasma channel guiding (best near 10¹⁸ cm⁻³)
- "stimulated" injection

- up to 1 Hz commercial Ti:S laser
- highly engineered channel & injector
- shorter depletion length

Two complementary INITIAL approaches to PW, multi-GeV laser-plasma acceleration are emerging

> 10 GeV may be accessible with channeling

OUTLINE

1) Initial 2 GeV PW-laser-driven e- acceleration results

- long pulse PW (Texas)
- short pulse PW (LBNL)

2) How do we reach 10 GeV or more?

- high PW beam quality
- robust plasma channels at $n_{\rm e} \simeq 10^{17} \, {\rm cm}^{-3}$
- specialized injection techniques yielding $\Delta E/E < 1\%$
- 4D single-shot laboratory visualization of laser wakes

3) Vision of future LPA-driven x-ray FELs

KEY DIFFERENCES FROM PREVIOUS EXPERIMENTS:

Lower n_e (10¹⁷ vs 10¹⁹ cm⁻³): longer dephasing (L_d) & pump depletion (L_{pd}) lengths Longer interaction (8 cm gas cell vs < 1 cm jet): to exploit longer L_d and L_{pd} Longer τ_{pulse} (150 fs vs < 60 fs): to excite plasma waves resonantly Higher peak power (~ 1 PW vs < 0.18 TW): to self-guide, create plasma bubble, trigger self-injection at low n_e

E. Gaul et al., Appl. Opt. 49, 1676 (2010)

CLEO 2013, QTh3A.1

The Texas Petawatt Laser delivers 1.05 μm, 150 fs pulses up to 150 J on target

Advertised

locally as: "The world's most powerful laser"

Facility Size: $150 \text{ m}^2 + 100 \text{ m}^2 = 250 \text{ m}^2$ (laser) (target bay) (total)

Mission: multi-purpose (~15% LPA)

85%: WDM, atomic physics, lab astrophysics, proton acceleration ... *e.g.* Talk **QTh3A.4**: neutron source developed at Texas PW

Beam Quality: needs work

Rep rate: ~ 1 pulse/hour

BELLA delivers 0.8 μm, 40 fs pulses up to 40 J on target

"The world's most powerful laser"

 $300 \text{ m}^2 + 80 \text{ m}^2 = 380 \text{ m}^2$ (laser) (target bay) (total)

100% laser-plasma electron acceleration

excellent capable of up to 1 Hz

Experimental setup emphasizes high precision & redundancy in e- energy measurement up to 2 GeV

Betatron x-rays: electrons wiggle while accelerating

Rousse, PRL 93, 135005 (2004); Kneip et al., Nature Phys. 6, 980 (2010); Cipiccia et al., Nature Phys. 7, 867 (2011)

 $|a_0|^2$

Texas PW pulses do not focus to Gaussian spots. This has advantages¹ & disadvantages²

¹ better self-injection ² slow self-focusing, ineffective self-guiding **Nonlinear Schrödinger Equation:** (describes initial propagation before density perturbations become important) $\left(\nabla^2 - \frac{1}{c^2} \frac{\partial}{\partial t^2}\right) \mathbf{a}(\mathbf{x}, t) = k_p^2 \left(1 - \frac{1}{2} \left\langle \left| \mathbf{a} \right|^2 \right\rangle \right) \mathbf{a}(\mathbf{x}, t)$ **Conserved quantity:** $I \equiv \int \left(\left| \nabla_{\perp} a \right|^2 - \frac{k_p^2}{8} \left| a \right|^4 \right) d\mathbf{x}_{\perp}$ (Vlasov 1971)

I > 0 (n_e < 2e17 cm⁻³): Hot spots propagate independently

[Wang et al., J. Plasma Phys. 78, 413 (2012)]

I < 0 (n_e > 2e17 cm⁻³): Hot spots merge (over several cm) [Wang et al., Nature Commun. (2013)] 0.2 0.4 0.3 0.6 0.5 1.0 0 0 1.0 2.0 12 6 z = 1 cm z = 1.5 cm z = 2 cmz = 0

PIC Simulations using approximations of the real pulse profile reproduce the experimental results

500

 $W_0 =$

Ĩ

 $w_0 = 80 \ \mu m$

Simulations by S. A. Yi, X. Zhang, G. Shvets using fully relativistic PIC code WAKE*

*Mora & Antonsen, Phys. Plasmas 4, 217 (1997)

- Pulse energy: 100 J
- Focus spread over $w_0 \approx 275 \ \mu m \ w$. hot spots

First BELLA experiments use 2 cm long gas jet, 16 J energy on target and produced near 2 GeV beams

- He gas jet (from AASC) with front shock for injection
- Operated in density range 5-7x10¹⁷ cm⁻³

BERKELEY LAB

LASER ACCELERATOR

Slide courtesy Wim Leemans

LANEX

laser 🔤

Al film

How efficient are PW-laser-driven accelerators?

1) Early days of TW-laser-driven plasma acceleration

gas jet

0

2

Umstadter, Science 273, 472 (1996) Electrons (10⁸ MeV⁻¹) spectrometer 5 Momentum (MeV c⁻¹) Below : 2 10⁹ e-

4 **Electron energy [MeV]**

Laser \rightarrow Electrons **Energy Conversion Efficiency**

$$\frac{3 \times 10^{-4} J(e^{-})}{3 J (laser)} = 10^{-4}$$

2) Early days of PW-laser-driven plasma acceleration

3) TW-laser-driven plasma acceleration at maturity

$$\frac{3.2 \times 10^{-2} J(e^{-})}{1.6 J(laser)} = 2 \times 10^{-2}$$

Summary of ~2 GeV LPA results so far

AUSTI	Lase	r-Plasma Co	onditions	Electron Beam Properties			
	Laser Pulse Energy [J]	Laser Pulse Duration [fs]	Plasma Density [10 ¹⁷ cm ⁻³]	E _{peak} [GeV]	% Energy Spread of Peak (FWHM)	Angular Divergence (FWHM) at peak [mrad]	Charge in peak [pC]
ēxas	100 ª	160	4.8 ^c	2.0	5	0.6	65
BELLA	16 ^b	40	5 to 7	1.8	15	~1	7

^a up to 150 J available

^b up to 40 J available

 $^{\rm c}$ self-injected LPA observed down to 1 x 10^{17} cm^{-3}

We have made promising forays into the PW-laser-driven, sub-10¹⁸ cm⁻³, multi-GeV LPA regime via 2 complementary approaches